

MAXSCORE: RECENT DEVELOPMENTS

Georg Hajdu Nick Didkovsky
Hamburg University of Music and Drama
georg.hajdu@hfmt-hamburg.de

Algomusic.com
nick@didkovsky.com

ABSTRACT
This paper presents recent development in MaxScore and
its peripheral applications. These developments include:

• adding new functionality to the core mxj object
including details on our implementation of an
undo/redo stack, new licensing models, custom
beam groups, and other new features.

• strategies to achieve proportional notation, with
a look to the future.

• expanding the feature set of the MaxScore and
LiveScore Editors which include new style edi-
tors for the design of non-standard clefs, tabla-
ture notation and Bohlen-Pierce microtonality.

• providing tools for greater compatibility with
other third-party developments such as bach,
Mira, the Scala Archive as well as the conTim-
bre sample library and its ePlayer

• new peripheral components for guided improvi-
sation and situated scores.

• strategies to achieve proportional notation, with
a look to the future.

1. INTRODUCTION
MaxScore is a notation package for Max consisting of a
core mxj object referred to as “MaxScore object” imple-
menting the Java Music Specification Language, and a
number of peripheral abstractions and devices [1]. A
complete music editor with menus and floating palettes
exists in form of the MaxScore Editor. Some of
MaxScore’s functionality has been integrated under the
moniker LiveScore into Ableton Live via the Max for
Live API. MaxScore shares some features with the bach
and cage computer-aided composition packages for Max
[2] and to a lesser extent with Inscore [3], but is set apart
from them by its capability to render to arbitrary contexts
as the engines for data handling and graphics rendering
are separate entities.

2. RECENT ADDITIONS TO THE
MAXSCORE OBJECT

A number of new features have been added to MaxScore.
Some of these, like the Undo/Redo stack, were imple-
mented in the core JMSL engine (Java Music Specifica-
tion Language) that powers MaxScore, while others like

new low-cost licensing options, primarily affect
MaxScore.

2.1 UNDO/REDO

JMSL’s Score package originally implemented a fine-
grained undo/redo mechanism using a Command Pattern
[4]. With this scheme, a user action that affected a score,
such as doubling the duration of a note, was encapsulated
in a command. The command included an undo operation,
in this case, halving the duration of the note. Commands
were added to a stack, and a user’s Undo action would
pop the top command off the stack and execute its custom
undo operation.
The Command Pattern implementation of an Undo stack
worked well for the subset of actions that had commands
implemented for them. However, as JMSL and MaxScore
expose a general API to the user as well as a user inter-
face (indeed Max itself is a GUI), it became difficult to
decide at what level undo/redo should be implemented.
If the user mouse-clicks a staff, a new note is inserted and
was undoable because the UI action was wrapped into the
Command Pattern. However, the same user may use the
API to insert a note using the addNote message in Max.
The addnote message is an elemental API call that does
not trigger an undoable command. Furthermore, the Max
user may patch together an arbitrarily complex network
of similarly fundamental API procedures which insert,
delete, and transform existing notes. We wanted to give
that user a functioning undo/redo stack and decided
something closer to the “Memento Pattern” would be
appropriate.
The current undo/redo scheme in JMSL’s Score package
addressed these issues by building a stack of score clones
instead of a stack of undoable commands. Actions that
altered the contents of a score trigger the saving of the
entire Score to a cache. Undo replaces the current score
with the clone at the top of the stack. At first, we were
concerned that the user would experience unacceptable
pauses while editing as the score was being written to the
cache, but in practice we discovered that writing a score
to the disk cache is almost unnoticeable, even with large
scores. The MaxScore user has also been given more
control over the undo/redo stacks, with new
saveToUndoStack, undo, and redo messages. The
saveToUndoStack message takes a snapshot of the score's
current state and saves it to the undo stack. This allows
the user to make arbitrary programmatic changes to the
score, i.e. non-ui commands that do not trigger UNDO
stack snapshots, save to the undo stack and undo the
activity if desired.

This scheme required a layer of programming to provide
the user with the sense that the score displayed by an

Copyright: © 2018 First author et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License
3.0 Unported, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author and source are
credited.

undo/redo event felt like the same score, even though it
was actually replaced with a clone. The starting measure
of the layout, for example, had to be cached along with
the score to restore the current layout. We may add other
such features such as restoring the current note selection.

2.2 Proportional Notation

User demand for proportional notation is currently ad-
dressed with two different strategies. One method is us-
ing linear measure widths and adjusting the base of
Blostein/Haken justification algorithm, which is respon-
sible for the influence of duration on horizontal note
placement [5]. Another technique is to use invisible rests
to fill in time space. The latter is more accurate but a
more cumbersome solution.

Figure 1-3 show various layout schemes in JMSL. The
default layout uses flexible measure widths, where
measures are algorithmically widened to accommodate
denser note layout. Changing the layout to linear measure
widths ensures that all measures have the same width, a
prerequisite to proportional notation. Changing the
Blostein/Haken justifier algorithm’s base from a default
of 0.7 to 0.4 results in a layout that comes close to pro-
portional notation.

Figure 1. JMSL Score’s default layout uses flexible
measure widths and a Blostein/Haken justification base
0.7

Figure 2. Changing JMSL’s measure width to Linear
results in all measures being the same width. Notice that
the quarter notes in the measure 3 do not align with the
notes in measure 1 due to justification algorithm JMSL
uses.

Figure 3. Linear measure widths and a Blostein/Haken
justification base of 0.4 comes close to proportional no-
tation. Notice that quarter notes in measure 3 align
closely with the notes in measure 1.

An alternative technique to achieve proportional notation
is to choose a fine time granularity, say 64th notes, and
filling a measure with Linear width with these notes.
These notes will all be spaced evenly, and the user may
change some of them to invisible rests, either by hand or
preferably using a straightforward algorithm. Figure 4
shows this technique, which additionally made stems and
beams invisible.

Figure 4. This example ensures accurate time-
based note placement required by proportional no-
tation. Horizontal space between note heads is oc-
cupied by evenly spaced invisible rests.

A useful plug-in to generate proportional notation using
this technique could be created in a straightforward way.
With traditionally notated durations as input, the plugin
ought simply to quantize their durations to the nearest
64th note to fit into this scheme. JMSL and MaxScore’s
“Unary Copy Buffer Transform” API (reference to JMSL
paper) would serve well as the plug-in platform.

We are developing a new strategy to achieve proportional
notation using an underlying data representation and a
layout manager that is robust and flexible. This approach
will address the shortcomings of the two approaches
discussed above, and will be visually precise and free of
an underlying quantization grid.

2.3 New MaxScore licenses

We have developed new license levels to accommodate
users’ needs. The latest is the low-cost ($9.90)
LIVE_LITE license, used by composers who wish to use
MaxScore in the Ableton Live environment without the
ability to edit in MaxScore or develop using JMSL’s Java
API. JMSL’s license scheme accommodates new license
types transparently, whose semantics are interpreted
programmatically. We have found that a fair number of
new users have been very satisfied with the limited but
focused functionality of using the new LIVE_LITE li-
cense to bring traditional notation into Ableton Live.

2.4 Beam Grouping

Beam grouping is a new MaxScore feature, delivered by
JMSL’s “BeamGroupTransform”, a NotePropertiesTrans-
form which is addressed from Max via a few simple mes-
sages sent to MaxScore. A BeamGroup is a specification
of how to group notes in a particular time signature.
Notes in a measure of 7/8, for example, may be beamed
as groups of 2+3+2 or as 3+2+2 or other combinations.
The MaxScore user specifies a BeamGroup with the
message addBeamGroup <timeSigUpper timeSigLower
g1 g2 g3 g4...> , where g1+g2+...+gn add up to the num-
ber of beats in the measure as specified by the upper

number in the time signature. For example, the following
message:
addBeamGroup 7 8 2 3 2
…specifies that a measure of 7/8 should be grouped as
2+3+2 while the following message:
addBeamGroup 6 8 3 3
…specifies that a measure of 6/8 be grouped as two
groups of three. Once the user specifies all such beam
grouping preferences, the beamGroupTransform message
executes this custom beaming on all selected notes, as
Figure 5 illustrates.

Figure 5. Results of beam grouping, where a measure
of 7/8 is grouped as 2+3+2 and a measure of 6/8 is
grouped as 3+3

3. MAXSCORE EDITOR: NEW FEA-
TURES AND TOOLS

3.1 Staff Styles

Staff Styles have been implemented in the MaxScore
Editor to enable different representations of musical con-
tent, primarily for non-standard notation. Staff Styles rely
on a plugin structure which has been described in [4].
The plugins talk to the MaxScore object via a JavaScript
object mapping pitch to an arbitrary position of on a staff
irrespective of its actual frequency and keeping track of
the latter by using a MaxScore note dimension called
originalPitch. Plugins for notation in the context of the
Bohlen-Pierce scale and other microtonal scales have
already been created, yet, recently, three new Staff Styles
editors (which allow greater variability and flexibility)
have been added to the repertoire.

Figure 6. Screen shot of the Clef Designer GUI.

Figure 7. The FFGG staff settable in the Clef Designer

3.1.1 Clef Designer
The JMSL API features a limited number of clefs, name-
ly treble, alto, tenor, bass and percussion clef. The Clef
Designer (Figure 6) was created to overcome this impasse
by adding another 15 clefs or multi-clef staves (such as
the OpenMusic-style FFGG staff [5], Figure 7) as well as
providing an interface for the creation of non-standard,
user-defined clefs (see Figure 8).

Figure 8. A score by Vietnamese composer Luong Hue
Trinh using a non-standard clef for text display on the
third staff.

3.1.2 Tablature
Tablature is supported by another editor allowing users to
define an arbitrary number of strings as well as fret inter-
vals, both set to pitches in floating-point precision. This,
for instance, permits tablature notation of the 10-string
41-tone guitar used in Hajdu’s piece Burning Petrol [7]
(Figure 9).
The editor features 21 presets from monochord to 19-
course theorbo which can be used as templates for user-
defined tablatures. As with the Clef Designer, user-
defined tablatures can be saved into scores they been
created for, from where they can be exported as files and
imported to other scores. Notes can be dragged to other
strings for alternate fingerings and shifted up and down
by using arrow keys.

Figure 9. The GUI to the Tablature editor featuring the
preset for the 10-string 41-tone guitar (foreground). A
short score in the corresponding tablature is seen in the
background.

Two things are still on our agenda:
1. The implementation of an intelligent algorithm

for fingering, both vertically (chords) and hori-
zontally (melody and chord progression) using
constraints and/or neural nets 0.

2. Adaptation of the editor to just-intonation in-
struments with individual, unequal fret positions.
This poses a particular challenge as two frets can
be close together representing tuning alternatives
for the same scale degree (e.g. 16/9 and 9/5) or
spaced widely apart, possibly even skipping a
scale degree. My personal communication with
guitarist John Schneider emphasized that just-
intonation guitar community is still far from de-
fining a common standard for such scenarios.

Steps
(195ED3)

Glyph Reference (see SMUFL [9])

0 natural
5  accidentalXenakisOneThirdToneSharp
10  accidentalXenakisTwoThirdTonesSharp
-5  accidentalWyschnegradsky3TwelfthsFlat
-10  accidentalWyschnegradsky9TwelfthsFlat
3  accSagittal11MediumDiesisUp
6  accSagittalSharp
9  accSagittalSharp11MUp
12  accSagittalDoubleSharp
-3  accSagittal11MediumDiesisDown
-6  accSagittalFlat
-9  accSagittalSharp11MDown
-12  accSagittalDoubleFlat

Table 1. The accidental set for the 39ED3 and 65ED3
Bohlen-Pierce microtonal scales. The indices in the left
column refer to the LCM of both scales.

3.1.3 Bohlen-Pierce microtonal notation
The Bohlen-Pierce scale is a macrotonal tuning dividing
the just twelfth (“tritave”) into 13 steps. It exists in just
and equal-tempered versions, the latter with a step size of
146.3 cents. The chromatic Müller-Hajdu notation has
been described in [10] and implemented in the MaxScore
Editors as Staff Style. Two subdivisions of the BP scale
deserve particular attention:

1. BP triple scale also known as 39ED3
2. BP quintuple scale (65ED3) (whose step size

deviates just 0.03 cents from 41-tone equal tem-
perament)

We created an editor which accommodates the aforemen-
tioned microtonal BP scales using accidentals from the
Bravura font set (Table 1), as partially suggested by clar-
inetist Nora-Louise Müller.

3.2 Expressions

The MaxScore object offers a variety of options to ex-
pand its feature set via note dimensions and rendered
messages [1]. Note dimensions are referred to by a nu-
meric or symbolic index and a floating-point value and

need to be defined before notes are added to a score.
These values are being added to a note event in the order
of their index and sent out of the object during playback.
In turn, rendered messages consists of single strings (or
symbols in Max lingo) applied to notes, intervals, staves
as well as measures and are sent out when the object
renders to its drawing context. Expressions offer a way to
combine the two, so that the messages to be sequenced
(an action) are associated with a graphical element sym-
bolizing the action to be performed. As an action can be
more than just a single float (e.g. an OSC message with a
number of values) the built-in limitation of the MaxScore
object was overcome by writing messages into a buffer (a
Max coll object) and referring to them by an index sent
out during playback (the floating-point value). The buffer
is created and updated whenever a score is loaded or
events or Expressions are added to it. Expressions are
created via the addRenderedMessageTo… family of
messages, e.g. addRenderedMessageToSelectedNotes 0 0
"expression Coda[0] 153.3ocSN1kCBBCDD1ixDN.jV
Pdw27B3c.jARSvVrs.IR3EuQdx7J31HlXxlM67s+MdZa
oms3DVgRxc99Fnx2ihppbnSXmMhryCNSfVbgKYn3H
JjNKdSjQWZ5RcNd+7EJE7HsAyCJKqwFB79DsW+6O
qfslnyKkMic3FCg5dJpHCQLWOLkDZk5qQz+bjZmk.X
vXYsWt+1gOvm.fiM". The two zeros in the message
refer to the initial coordinates of the part to be rendered
(i.e. graphics), which can later be adjusted by dragging
the graphics to another position, while the long string
after Coda(0) is a Base64-compressed Max dictionary
(Example 1).

{
 "rendered" : {
 "0" : ["frgb", 0.0, 0.0, 0.0, 255.0],
 "1" : ["font", " Times Italic", 18],
 "2" : ["writeto", 0.0, 31.0, "dal niente"]
 }
,
 "sequenced" : {
 "0" : {
 "editor" : "bpf",
 "message" : "/amplitude",
 "value" : [1000.0, 0.0, 1.0, 0.0,
0.0, 0, 1000.0, 1.0, 0, "linear"],
 "autorender" : "false"
 }
 }
}

Example 1. An Expression consists of “rendered”
and “sequenced” messages.

Example 1 shows an example for an Expression in JSON
format. It consists of the two keys “rendered” and “se-
quenced”, each holding an arbitrary number of entries.
The sequenced dictionaries contain the keys “editor”,
“message”, “value” and “autorender”, with the latter
denoting whether or not the MaxScore editor should try
to render the values irrespective of the drawing instruc-
tions given by the “rendered” dictionary.

The MaxScore Editor currently offers three editors
(Figure 10) for the creation of sequenced messages:

- a generic editor with a text field for the message
name and another for its values

- an editor for breakpoint functions
- an editor for DJster [11] parameter settings

Figure 10. Example of an editor for sequenced messag-
es.

In a MaxScore XML file, Expressions are stored as the
Message attribute of a <userBean> element (of a <note>
or <interval> parent element). It consists of a string con-
taining a compressed Max dictionary preceded by “ex-
pression” and a symbolic reference (Example 2).

<note NOTEDUR="2" TUPLET="0" DOTS="0" ACCINFO="0"
DURATION="1.0" PITCH="71.0" VELOCITY="0.5"
HOLD="0.800000011920929" BEAMEDOUT="false" GLIS-
SOUT="false" TIEDOUT="false" ACCPREF="0" ACCVISPOLI-
CY="0" ALTENHARMONIC="false" DYN="0" SLUROUT="false"
ISGRACENOTE="false" GRACENOTESEPARATIONSCAL-
ER="2.0" LEDGERLINESVISIBLE="true" WEDGE="none" OTTA-
VA="none" MARK="0" TEXTOFFSETX="0" TEXTOFFSETY="0"
NOTEHEAD="0" NOTEHEADSCALE="1.0" VISIBLE="true"
NOTEHEADVISIBLE="true" STEMVISIBLE="true" OVERRIDE-
LEVEL="-1" ISOVERRIDELEVEL="false" STEMINFOOVER-
RIDE="false" STEMINFO="2" TEXT="" >
<dim index="4" value="0.0" name="EventFlag" />
<dim index="5" value="71.0" name="originalPitch" />
<dim index="6" value="1.0" name="index" />
<userBean CLASS-
NAME="com.softsynth.jmsl.score.util.RenderedMessageBean"
Name="RenderedMessageBean_note-sel" Message="expression
Coda[0]
159.3ocSO9lBBCCCE2ixid.lsSFHdC76dAxVyjBccy9G8Cic2MUmf
PHj7KgWdIxAKGYKtfUnk7X7dOzM6QaWWCLU7bHC0M2Dm
v0L4cCJXNiVYzqnKy4455mLMPYIOBNNjYE1PheT3vveWXEr0
kmiRY+xHDESzcV5NRSKdWtXY7j7kJxn0eMh4miz6rJ.dWfoHnh
H2mGo5TxmX4vaGdyE.8yM" Xoffset="0.0" Yoffset="0.0" >
</userBean>
</note>

Example 2. Expression are stored as compressed
Max dictionaries. The <dim> element with in-
dex="6" attribute contains the reference (val-
ue="1.0") to the message contained in the buffer.

3.2.1 Button Mode
MaxScore has two modes for mouse interaction:

- one for editing notes and other score elements
- one for repositioning and deleting Expressions

and Picster [1] elements

These modes can be toggled by using caps lock. When
clicking on a graphics element in Picster mode, it is high-
lighted by a red bounding rectangle. We are planning to

implement a button mode which would allow a Mira user
(see section 4.2) to use Expressions as interactive score
elements, sending out “sequenced” messages upon click-
ing on them—thus bridging the gap between score and
interface1. Jacob Sello’s Hexenkessel project [12] is an
excellent example for such an approach developed at the
HfMT Hamburg.

3.3 Searchable Scala database

The Scala Archive is the world’s largest collection of
microtonal scales maintained by Manuel op de Coul [13].
It is supported by an increasing number of third-party
applications such as the Kontakt sampler and the
MuseScore notation editor, among many others.
The Scala Archive currently contains more than 4500
scales and tunings—a number that makes informed
choices staggeringly difficult. We have therefore created
a searchable database via the Max SQLite JavaScript
implementation. Searches can be performed according to

- number of steps,
- pitch content in terms of both floating-point and

rational numbers
- strings contained in the comment section of a

Scala file.

The database is integrated into the Scala Browser, a Max
patch we refer to as a “virtual keyboard”. The interface of
the Scala Browser displays notes of the scales which can
be clicked on to add notes to a score or change their pitch
(Figure 11). A MIDI keyboard can be used instead of or
in addition to mouse clicks.

Figure 11. The Scala Browser virtual keyboard contain-
ing the Scala Archive as searchable database. The
browser filters all scales containing the “Grady” search
string in their comment section.

3.4 MaxScore.NetCanvas

MaxScore.NetCanvas is a Java-based peripheral compo-
nent of MaxScore developed by Benedict Carey, de-
signed to render scores in web browsers via web socket
connections [15].
In the latest update the communication be-
tween MaxScore and MaxScore.NetCanvas now occurs
entirely within the Max environment, doing away with

1 At the HfMT, we have dedicated the UMIS research project (Unified
Musical Instrument Surfaces) to the idea that an instrument can also act
as a controller and score display.

the previous reliance on inter-application messaging. This
has the effect of speeding up communication between
Max and remote clients, and simplifies the setup proce-
dure for MaxScore users. The set of messages accepted
by the MaxScore.NetCanvas object has expanded to in-
clude messages specific to part rendering, the behavior of
cursors and control of the server (configuration, starting
and stopping the websocket server and the new fileserver
for serving the html client files). Max users can run mul-
tiple instances of MaxScore.NetCanvas concurrently. The
new helpfile (Figure 12) contains information about how
to use the new MaxScore.NetCanvas abstraction and
accompanying mxj object; the source is available on
Github.

Figure 12. The helpfile to MaxScore.NetCanvas.

4. INTERFACING WITH OTHER THIRD-
PARTY DEVELOPMENTS

4.1 bach compatibility

bach is a Max package developed by Andrea Agostini
and Daniele Ghisi which has become the de facto stand-
ard for computer-aided composition in Max for its thor-
ough integration and plethora of tools such as the
bach.roll and bach.score notation objects [2]. Being mod-
elled after IRCAM’s OpenMusic environment its exter-
nals implement a data format which due to its similarity
to the LISP syntax is called llll (lisp-like linked lists).
Despite some overlap, bach.score and MaxScore occupy
different niches of real-time notation ecosystem. While
bach.score excels at continuous tempo changes, polyme-
ter, nested tuplets and some GUI operations, MaxScore
shows more flexibility in how it performs graphics ren-
dering. By separating the mxj object designated for data
handling from its drawing context, MaxScore can be used
for generating pdfs, for data mapping as well as rendering
to various 2D and 3D contexts. We therefore have created
the maxscore.bachScoreToMaxScore abstraction capable
of bridging bach.score with the MaxScore Editor with the
aim to preserve as much information as possible (i.e. by
translating bach.score’s slot and pitch-bend data into
corresponding note attributes and userBeans, see Figure
13).

Figure 13. Translations between bach.score and
MaxScore, featuring microtones (top), break-point func-
tions (center) and text slots (bottom) performed by the
maxscore.bachScoreToMaxScore abstraction.

4.2 Mira and MiraWeb

Mira and MiraWeb are technologies (the latter based on
xebra.js) developed by Florian Demmer for Cycling ’74,
capable of mirroring Max GUI objects such as sliders,
buttons, messages and comments in a dedicated iOS
application and/or web browsers [15]. It therefore consti-
tutes a perfect companion to Max by harnessing the mul-
ti-touch power of iPads, tablet computers or smartphones.
The built-in zeroconf technology and automatic mirroring
(Max objects simply need to be dragged onto an object
called mira.frame) make Mira and MiraWeb a superior
choice in comparison to alternative applications (e.g.
TouchOSC, Lemur or C74).

4.2.1 MaxScore.toMira
Yet, dedicated notation objects mirroring objects such as
nslider or bach.roll are currently out of reach as this
would require a major development effort on the side of
Cycling ’74 or third-party developers. However, Mira
and MiraWeb support the fpic object capable of dynami-
cally loading and displaying images. We have taken ad-
vantage of this by creating an abstraction called
MaxScore.toMira. In this scenario, MaxScore renders to a
Jitter matrix object via the embedded
jit.render2MaxScore abstraction (Figure 14). Upon ex-
porting the matrix as an image to a temporary location,

the fpic object is prompted to load and display this image
after a short delay. This image is then transferred over the
network to the Mira client. MaxScore.toMira performs
adjusts automatically to score dimension and dynamically
scales the multi-touch information it receives from the
mira.touch object to support user interaction with a
MaxScore object.
This approach is efficient enough to create the illusion of
a dedicated notation object and thus offers the only seam-
less solution to date enabling users to interface with Max
through music notation also supporting bach.score via the
maxscore.bachScoreToMaxScore abstraction (see Figure
15.

Figure 14. Rendering to Jitter enables MaxScore to
save a score as an image.

Figure 15. The MaxScore.toMira abstraction allows us-
ers to display scores on multi-touch devices. This ex-
ample displays the content of a bach.score object via
translation to MaxScore

4.3 conTimbre playback

conTimbre is a sound bank of orchestral instruments
created by Thomas Hummel. With more than 80000
individual samples—many of them performed with ex-
tended techniques—it is a tool becoming increasingly
popular amongst new music composers and electronic
musicians alike [16]. Using copy protection and a propri-
etary file format, it requires dedicated software to play

back these samples. However, Hummel has implemented
a suite of OSC message for interaction with its Max-
based ePlayer. We have thus created new abstractions for
Max and Max for Live exploiting the power of the con-
Timbre library and enabling multi-timbral microtonal
playback. The MaxScore.2conTimbre module, comple-
menting the MaxScore.Sampler and
MaxScore.Fluidsynth2 playback devices, reads ePlayer
settings files, which fills the menus with (and sets them
to) the current instrument names.

Figure 16. Screenshot of the MaxScore.2conTimbre
module, a playback device for MaxScore.

5. NEW TOOLS FOR GUIDED IMPROVI-
SATION AND SITUATED PERFOR-

MANCES

5.1 Cursors

In 2006, Marlon Schumacher, then-member of the Euro-
pean Bridges Ensemble, asked Hajdu to implement cur-
sors in the Quintet.net Client (a software for networked
multimedia performance) for his piece Fire [17] which
were to travel independently of each other at different
speeds across its notation display to guide the perfor-
mance of electronic musicians. In 2016, cursors were also
added to the MaxScore Editor and more recently to
MaxScore.toMira through the MaxScore.Cursors abstrac-
tion. The behavior of those cursors (a maximum of 20 per
score) can be controlled with a variety of messages for
which the Max @ attribute notation was adopted.
Each message contains the message name cursor, an
instance number and any of the following @ attributes:

cursor 0 @begin 0 0 @end 0 1 @runs 1
@countdowncolor 1. 0. 0. 1. @countdown line @color 0.
0. 1. 0.7 @interval 2000 @ timestretch 2. @shape line

Depending on the @begin and @end attributes, the
length of a cursor will be adjusted to the span of the spec-
ified staves. For this, the getStaffBoundingInfo query is
performed to yield the bounding rectangle around a par-
ticular measure/staff (our term for the cross section of a
measure and a staff, for lack of a better term). In addition,
tempo and time signature are queried to determine the
speed of the cursor travelling across the canvas.
Furthermore, cursors can also be controlled with the start,
stop, resume, blink, unblink und hide messages. Instance

number -1 can be used if all cursors are to be affected at
once.
There is a difference between rendering cursors in
MaxScore and Mira: While in MaxScore cursors are
rendered just like any other graphics elements, they are
represented by the actions of GUI objects in Mira (such
as the visible line of a transparent multislider). This way,
the network load can be decreased dramatically as only
control messages need to be sent to the clients to adjust
the position and size a multislider and move its line.

5.1.1 Carnage: Using cursors in guided improvisation
In 2016, one of us (Hajdu) participated in an academic
exchange with Cat Hope, Lindsay Vickery and other
members of the Decibel Ensemble (all at WAAPA, Edith
Cowan University, Perth, at the time). The aim was to
mutually expose ourselves to the developments of the
other group [20]. A concert was organized at the end of
our first stay. For this, the piece “Carnage” was written as
a guided improvisation for the Decibel ensemble (flute,
bass clarinet, viola, cello, percussion) and premiered on
July 29, 2016. The piece (based on the eponymous film
by Roman Polanski and Yasmina Reza) featured five
lines of emoticons. The musicians were instructed to
interpret the moods represented by the emoticons and
were guided by the movements of the cursors. The nota-
tion was read from a single projection of the MaxScore
canvas.
In November of 2017, this piece was performed again in
Tel Aviv by the Meitar ensemble (featuring flute, bass
clarinet, violin, cello and piano). During this perfor-
mance, the musicians read the music from individual
iPads running the Mira app (Figure 17).

Figure 17. Hajdu’s piece Carnage consists of a one-
page score with individual cursors guiding the perfor-
mance

6. OUTLOOK AND CONCLUSIONS
MaxScore development is currently focusing on areas
including network connectivity (MaxScore.NetCanvas
and MaxScore.toMira), guided improvisation
(MaxScore.Cursor) as well as compatibility with other
software developments (bach and conTimbre). This has
been facilitated by changes to the MaxScore object itself.
A promising door has been opened by the introduction of
Expressions which will allow users to pursue ideas akin
to the Spatialization Symbolic Music Notation [19],
which combines a language of icons with clearly defined

spatial trajectories. For this, we will be working on a GUI
accommodating a number of editors both in the graphical
and control domains. It is also planned to use MaxScore
and its peripheral components in a performance in the St.
Pauli Elbtunnel in Hamburg—a 100-year old tunnel un-
der the Elbe river, involving 144 musicians reading their
music off portable devices in 2019. Until then, further
strides will have to be done towards robustness and effi-
ciency.

Acknowledgments
The authors would like to thank the Hamburg Ministry
for Science, Research and Equality (BWFG) and the
Federal Ministry for Education and Research (BMBF)
for their support within their Landesforschungsförderung
and Innovative Hochschule frameworks.

7. REFERENCES
[1] G. Hajdu, and N. Didkovsky, “MaxScore – Current

State of the Art,” in Proceedings of the International
Computer Music Conference, Ljubljana, 2012, pp.
156–162.

[2] A. Agostini and D. Ghisi, “Bach: an environment for
computer-aided composition in max,” in
Proceedings of the International Computer Music
Conference. Ljubljana, Slovenia, 2012, pp. 373–378.

[3] D. Fober, Y. Orlarey, S. Letz, “Inscore – An Envi-
ronment for the Design of Live Music Scores”, in
Proceedings of the Linux Audio Conference, 2012,
pp. 47–54.

[4] Erich Gamma and Richard Helm, Design Patterns:
Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994, p. 263.

[5] D. Blostein and L. Haken, “Justification of Printed
Music”, Communications of the ACM, vol. 34, no. 3,
pp. 88–99, 1991.

[6] G. Hajdu, “Dynamic Notation - A Solution to the
Conundrum of Non-Standard Music Practice”.
Proceedings of the First International Conference
on Technologies for Music Notation and
Representation, Paris, 2015.

[7] C. Agon, G. Assayag and J. Bresson, The OM
Composer's Book Vol. 1. Collection Mu-
sique/Sciences, Editions Delatour France / IRCAM,
2006.

[8] G. Hajdu, „Die Transkription des Poème Vers la
flamme op. 72 von Alexander Skrjabin für Bohlen-
Pierce-Ensemble“, in A. Bense, M.Gieseking, B.
Müßgens (eds.): Musik im Spektrum technologischer
Entwicklungen und Neuer Medien. Festschrift für
Bernd Enders, Osnabrück: epOs, 2015, pp. 65-80.

[9] D. R. Tuohy and W. D. Potter, "Generating Guitar
Tablature with LHF Notation Via DGA and ANN"
in Proceedings of the 19th International Conference
on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems, IEA/AIE,
pp. 244- 253, 2006.

[10] N.-L. Müller, K. Orlandatou and G. Hajdu, "Starting
Over – Chances Afforded by a New Scale," in: M.
Stahnke and S. Safari (eds.), 1001 Microtones,
Neumünster: Von Bockel, 2014, pp. 127–172.

[11] G. Hajdu, “Resurrecting a Dinosaur - The Adaption
of Clarence Barlow's Legacy Software
AUTOBUSK” in Proceedings of the Second
International Conference on Technologies for Music
Notation and Representation, Cambridge, 2016.

[12] J. Sello, “The Hexenkessel: A Hybrid Musical
Instrument for Multimedia Performances,” in
Proceedings of the International Conference on New
Interfaces for Musical Expression, 2016.

[13] http://www.huygens-fokker.org/docs/scales.zip

[14] B, Carey and G, Hajdu, “Netscore: An image
server/client package for transmitting notated music
to browser and virtual reality interfaces” in
Proceedings of the Second International Conference
on Technologies for Music Notation and
Representation, Cambridge, United Kingdom, 2016.

[15] https://cycling74.com/articles/content-you-need-
miraweb

[16] https://www.contimbre.com

[17] G. Hajdu and N. Didkovsky, “On the Evolution of
Music Notation in Network Music Environments,”
Contemporary Music Review, vol. 28, nos. 4/5,
2009, pp. 395-407.

[18] S. James, C. Hope, L. Vickery, A. Wyatt, B. Carey,
X. Fu and G. Hajdu, “Establishing connectivity
between the existing networked music notation
packages Quintet.net, Decibel ScorePlayer and
MaxScore” in Proceedings of the Third
International Conference on Technologies for Music
Notation and Representation, A Coruña, 2017.

[19] E. Ellberger, G. Toro Pérez, J. Schuett, et al, “Spati-
alization Symbolic Music Notation at ICST”, in
Proceedings ICMC|SMC|2014, Athens, 2014, pp.
1120-25.

