
	
 	

	

MAXSCORE – CURRENT STATE OF THE ART

ABSTRACT

We present recent developments of MaxScore – an
mxj notation object for Max—and the environment
it is embedded in. Since the first presentation of
MaxScore at the 2008 ICMC in Belfast, the
software has gone through some major
development stages making it a prime choice for
music notation within the Max and Live (via Max
for Live) software environments. Besides providing
a growing set of well over 230 messages, which
communicate with the JMSL API, development has
focused on offering convenient tools for real-time
composition and notation in networked music
environments as well as graphical and microtonal
notation. The LiveScore/MaxScore editors are
central to our efforts—implementing different
microtonal notation modes (48TET, 72TET and
Just Intonation) as well as the Max patcher-based
Scorepions plugin system.

1. INTRODUCTION

MaxScore is a Java Max object developed by Nick
Didkovsky, which works in conjunction with Max
abstractions created by Georg Hajdu [1][2]. Being
released in 2007 (with a precursor from 2005), it
represents the first integrated notation solution for
the Max programming environment and has
enjoyed a loyal following despite powerful
alternatives such as the Bach Project
(http://www.bachproject.net). MaxScore renders to
the Canvas abstraction, which consists of a set of
nested Max patches (Fig. 1). While earlier versions
of MaxScore have used basic drawing shapes such
as linesegments, polygons and arcs to represent
musical signs, the versions since 2009 employ a
music font and use a more abstract definition of
music glyphs (e.g. note heads and clefs) as well as
music curves (e.g. ties, slurs, tuplets, ottava
alta/bassa). Since rendering is done in Max, music
glyph and curve messages can be intercepted and
reinterpreted by the Canvas, allowing for greater
flexibility and adaptability compared to “boxed”
solutions. The Canvas abstraction now
accommodates various music font maps (New
Aloisen, Jazz, Maestro and Opus) and microtonal
maps (for eighth-tone, twelfth-tone and Extended
Helmholtz-Ellis JI Pitch notation) and is also
capable of exporting vector graphics in svg format.

Drawing is done with the Max lcd object to which
the processed music glyph and curve messages are
ultimately passed. These come out of MaxScore’s
first outlet while its second outlet is also used in
response to info messages which play an important
role in some scenarios in which note and/or staff
attributes need to be queried before a music glyph
is drawn. The third and fourth outlets pass
instrument output and sequence dumps as well as
echo the indexes of the notes transcribed by the
transcriber (Fig. 2).

Figure 1. LiveScore Editor with floating palettes.

MaxScore employs a hierarchical data format
where score, measure, staff, track, note and interval
elements (among others) form a tree. New
attributes (e.g. for the visibility of notes, noteheads
or stems etc.) are continually being added to
accommodate new scenarios. In addition, a user can
define an unlimited number of extra note
dimensions which can be used to control various
processes and drive playback devices.
To complement the functionality of MaxScore,
Ádám Siska has designed a number of Max
externals: sadam.rapidXML, sadam.base64 and
sadam.lzo among others [3]. As some crucial info
queries return XML code, Siska’s Max wrapper for
the efficient RapidXml parser is an indispensable
ingredient in most scenarios involving real-time
notation, while the other two objects facilitate the
communication of remote MaxScore instances—a
welcome feature in networked music performances.

Recently, a searchable dictionary was added in
order to facilitate programming with MaxScore
with its plethora of different messages.

Georg Hajdu Nick Didkovsky
Hochschule für Musik und Theater Hamburg

Center for Microtonal Music and
Multi-Media (ZM4)

 georghajdu@hfmt-hamburg.de

Rockefeller University
didkovn@mail.rockefeller.edu,

www.algomusic.com

	
 	

	

Figure 2. Communication between the main components
of a MaxScore patch.

2. LIVE

When Max for Live extension was released in 2010
by Ableton and Cycling ‘74, it became obvious that
MaxScore could provide what numerous Live users
were desiring: a device for the notation of Live
MIDI clips. To this end, we have developed two
devices for display (LiveScore Viewer) and editing
(LiveScore Editor), and added two more devices (a
sampler and a soundfont player) for microtonal
playback, which is not natively supported by
Ableton.

Figure 3. Screen shot of the LiveScore Viewer

2.1. LiveScore Editor

While the LiveScore Viewer was designed to give
users a quick and musically sensible overview of a
clip’s content, the editor makes use of the Live API
for bi-directional communication: a clip can be
selected from the Live clip matrix, transcribed and
edited with all edits being instantaneously mirrored
in the original. Before transcription, a key finder
(utilizing a neural network recognizing major/minor
key profiles [4]) and a clef finder (analyzing the
pitch distribution in the clip) preprocess the note
lists. Additionally, a percussion map translates
MIDI key numbers into the appropriate pitches and
symbols should percussion notation be desired (Fig.
6).

A set of menus and floating palettes are available
for convenient editing and embellishing of the
transcribed clips, which can be saved in JMSL’s
XML score format (Fig. 1). Staff attributes can be
set in the Staff Manager, which represents an
alternative view of the Editor window.
Since for a given clip, LiveScore’s transcriber will
only transcribe one track (i.e. voice) and shorten the
duration of a note when a new note starts, the
question arises as to how it preserves the polyphony
of overlapping note events contained in a Live clip.
The answer is as follows: note elements have a
“hold” attribute which stores sustain time and will
be used when the Live clip is being updated.

Figure 4. Communication between Live, Max and
MaxScore during transcription and updating. The flow is
top to bottom.

Ableton	
 Live	
 (pitch	
 time	
 duration	
 velocity	
 muted_flag)	
 	

notes	
 13	

note	
 59	
 42.166668	
 0.158333	
 125	
 0	

note	
 60	
 42.	
 0.158333	
 125	
 0	

note	
 60	
 42.333332	
 0.158333	
 125	
 0	

note	
 62	
 42.5	
 0.158333	
 125	
 0	

note	
 64	
 42.666668	
 0.158333	
 125	
 0	

note	
 65	
 42.833332	
 0.158333	
 125	
 0	

note	
 67	
 43.	
 0.158333	
 125	
 0	

note	
 69	
 43.166668	
 0.158333	
 125	
 0	

note	
 70	
 43.333332	
 0.158333	
 125	
 0	

note	
 72	
 43.5	
 0.158333	
 125	
 0	

note	
 74	
 43.666668	
 0.158333	
 125	
 0	

note	
 76	
 43.833332	
 0.158333	
 125	
 0	

note	
 77	
 44.	
 3.	
 126	
 0	

done	

	

MaxScore	
 (instrument	
 time	
 tempo	
 duration	
 pitch	
 velocity	
 hold	
 event_flag	

additional_note_dimension)	

sequenceDump	
 start	

0.	
 0.	
 60.	
 1.	
 0.	
 0.	
 1.	
 3.	
 0.	

...	
 ...	
 ...	
 ...	
 ...	
 ...	
 ...	
 ...	
 ...	

0.	
 42.	
 60.	
 0.166667	
 60.	
 125.	
 0.158333	
 3.	
 0.	

0.	
 42.166668	
 60.	
 0.166667	
 59.	
 125.	
 0.158333	
 3.	
 0.	

0.	
 42.333332	
 60.	
 0.166667	
 60.	
 125.	
 0.158333	
 3.	
 0.	

0.	
 42.5	
 60.	
 0.166667	
 62.	
 125.	
 0.158333	
 3.	
 0.	

0.	
 42.666668	
 60.	
 0.166667	
 64.	
 125.	
 0.158333	
 3.	
 0.	

0.	
 42.833332	
 60.	
 0.166667	
 65.	
 125.	
 0.158333	
 3.	
 0.	

0.	
 43.	
 60.	
 0.166667	
 67.	
 125.	
 0.158333	
 3.	
 0.	

0.	
 43.166668	
 60.	
 0.166667	
 69.	
 125.	
 0.158333	
 3.	
 0.	

0.	
 43.333332	
 60.	
 0.166667	
 70.	
 125.	
 0.158333	
 3.	
 0.	

0.	
 43.5	
 60.	
 0.166667	
 72.	
 125.	
 0.158333	
 3.	
 0.	

0.	
 43.666668	
 60.	
 0.166667	
 74.	
 125.	
 0.158333	
 3.	
 0.	

0.	
 43.833332	
 60.	
 0.166667	
 76.	
 125.	
 0.158333	
 3.	
 0.	

0.	
 44.	
 60.	
 3.	
 77.	
 126.	
 3.	
 3.	
 0.	

0.	
 47.	
 60.	
 1.	
 0.	
 0.	
 1.	
 3.	
 0.	

sequenceDump	
 stop	

Table 1. Comparison between Live note lists and
MaxScore sequence dumps

M4L.GetAllNotes

AutoSetClef AutoSetKeySig SetTempo

MaxScore

Percussion MapTranscriber

Live Clip

Sequence Dump Inverse
Percussion Map

M4L.ReplaceAllNotes

Live Clip

M4L.GetTimeSig M4L.GetTempo

Live API

Live API

Max

Java

	
 	

	

Still, bi-directional communication between Live
and MaxScore is challenged by an important issue
which still awaits a solution: Live’s note list only
consists of 5 parameters (pitch, time, duration,
velocity and a muted flag), not enough to either
store or reference additional attributes such as
dynamics, articulations, slurs etc. Pitch is stored as
an integer value, which won’t allow for microtonal
deviation either [5]. Therefore, the creation of rich
scores in LiveScore quickly becomes a one-way
street where an embellished clip lives on outside
the Live set, separated from its twin clip. We have
brought this issue to the attention of Ableton, and
are optimistic that a solution will be found in the
future.

There are two playback modes: (1) Live’s playback
which sends the clips’ note events to standard Live
devices via the internal MIDI bus and is synced to
MaxScore’s page turns and note flashes as well as
(2) MaxScore’s playback engine which passes
score events to a capable audio device via a non-
standard format which was devised to
accommodate microtonal pitches.
In order to synchronize with the Max and Live
environments, JMSL's scheduler is now being
driven by an implemented JMSLMaxClock, used as
JMSL.clock [6].

While developing the software, special attention
was given to allowing several instances of the
editor to coexist in one Live set. This particularly
concerned potential clutter caused by using several
instances of the same floating palettes (Fig 1.). We
have implemented a mechanism that prevents a
second instance of a palette to be opened and
dynamically directs user actions to the most recent,
front-most editor window, regardless of whether the
palettes are children of this window or not.

Figure 5. The Percussion Map uses another MaxScore
instance to display pitch and notehead for a given
percussion instrument.

2.2. Picster

Since MaxScore’s repertoire of score markings is
rather basic, we added a new feature called
“rendered messages” making the repertoire of text
markings and graphics virtually unlimited. These
messages, which can be either attached to notes,
measure/staves or measures,1 consist of an index,
position information and a string, which will be
passed to the drawing engine (the Canvas
abstraction in our case). As long as the string
contains messages understood by the engine, they
will be rendered and displayed in the score.
Rendered messages will be inserted and saved in
JMSL scores marked up by various UserBean tags.

Figure 6. Screenshot of the Picster GUI with a sample of
different shapes

Picster is a Max patch created by Jacob Sello and
one of us (Georg Hajdu) providing a drawing
environment, where rendered messages can be
interactively created and edited. Users can choose
from 14 different shapes (from linesegments, ovals,
rectangles and polygons to freehand drawings, text
and scalable pictures). Markings and graphics can
easily be added to a library, accessible from the
Editor’s Picster menu. Once created, the objects the
rendered elements are attached to, can be identified
and highlighted by shift-ctrl-click, and the elements
themselves be moved or re-edited in the Picster
patch.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 Measure and staves form a two-dimensional matrix with staves
on the x axis and measures on the y axis. A measure refers to
vertical content across all staves for a given measure number,
whereas staff refers to horizontal content across all measures for
a given staff number. A measure/staff refers to the cross-section
between a given measure and staff. This is the smallest unit in
the matrix.	

	
 	

	

2.3. Scorepions

Scorepions2 are Max patches consisting of
MaxScore messages, which reside in a special
folder inside MaxScore Lib and may be
dynamically invoked by their parent patch—thus
forming a plugin system similar to those available
in most commercial music editors. Scorepions can
be used to programmatically generate and process
all elements of a score. Amongst the 15 plugins that
are currently part of the MaxScore release, the
DJster-Autobus Scorepion deserves special
attention as it represents a revived and further
developed version of Clarence Barlow’s legacy
software AUTOBUSK—a program devised for
algorithmic composition
(http://www.musikwissenschaft. uni-mainz.de/
Autobusk/). The DJster-Autobus Scorepion takes
the non-real-time part of Barlow’s program and
uses its algorithms to interactively fill measures
with note events based on given parameter presets.
His application has also been extended to
accommodate the microtonal scales from the Scala
archive (an archive with well over 4000 scales;
http://www.huygens-fokker.org/docs/scales.zip) as
well as complex additive meters. A detailed
explanation of the underlying algorithms and their
adaptation to Max is outside the scope of this paper.

Figure 7. GUI of the “Djster Autobus” Scorepion (top).
Resulting five measures algorithmically composed in the
Bohlen-Pierce Gamma scale (bottom).

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2	
 Kudos to my student Daniel Dominguez for suggesting its
name.
	

2.4. Microtonality

JMSL natively supports quarter-tone notation. All
other types of notation (8th-tone, 12th-tone, Just
Intonation) require remapping of music glyph
messages in the Canvas. As an example we will
now describe the implementation of the Extended
Helmholtz-Ellis JI pitch notation, which by far
surpasses other microtonal maps in terms of
complexity and computational resources.
The Extended Helmholtz-Ellis JI Pitch notation was
developed by Marc Sabat and Wolfgang von
Schweinitz as a comprehensive approach to the
notation of music in Just Intonation (JI) [7]. The
aim is to encode harmonic relationships between
notes in terms of their accidentals. Sabat and von
Schweinitz have created the HE font with
accidentals capable of representing a 61-limit
harmonic space, but have themselves suggested to
cap the system at 23-limit (or possibly even lower).
Since JMSL has no built-in concept of harmonic
relationships, ratios expressing these relationships
need to be calculated each time a page is being
rendered. Two attributes are taken into
consideration: the key signature of a measure
representing the fundamental as well as the pitch of
a note in floating point precision. A lookup table is
being used to determine the ratio corresponding to
the cent interval between the fundamental and the
pitch. Lookup tables can be generated according to
different principles such as sensory consonance,
harmonic entropy or, in our case, harmonic energy,
a measure derived from Clarence Barlow’s concept
of the harmonicity of intervals—which proves to do
justice to most musical situations [8].
Once a ratio is found for the given cent interval, its
numerator and denominator are subject to prime
factorization and an algorithm is being applied to
determine the enharmonic spelling of the note and
its accidentals.

Figure 8. Accidental-finding algorithm for the Extended
Helmholtz-Ellis JI Pitch Notation

To specify the position and spelling of the note, the
fundamental is being used as the point of departure
on a non-closing spiral of fifths, with the numerator

Pitch (62.67) Key Signature (C)

Interval (267)

Lookup (7/6)

Spelling:
Position in spiral of

fifths (-2 + -1 →
eb flat)

Accidentals:
Pythagorian flat

with septimal
comma down

Prime Factorization
(2^-1 * 3^-1 * 7^1)

	
 	

	

and denominator determining the direction
(clockwise, counterclockwise) and amount (in
terms of fifths) to move. Accordingly, up to three
accidentals are being chosen in accordance to the
primes contained in the ratio.

Ultimately, the growing repertoire of LiveScore’s
microtonal modes will allow users to create
different representations of the same music either
by instantaneously switching between views or by
juxtaposing different ones. In an unpublished talk at
the 2010 Bohlen-Pierce symposium in Boston,
Hajdu showed a Max patch, capable of several
representations of the same music written in the
Bohlen-Pierce tuning. He coined those
representations cognitive notation (notation in
familiar contexts such as five-line diatonicism),
instrumental notation (notation based on the
physicality of an instrument, e.g. tablatures) and
logical notation (notation capable of visually
representing equal distances) (Fig. 9).

Figure 9. Alternate views of the same music (Beyond the
Horizon for 2 BP clarinets and synth by Georg Hajdu) in
Bohlen-Pierce tuning (top: cognitive notation; middle:
performance notation; bottom: logical notation)

2.5. Printing

Figure 10. Rastered svg file of the 43-tone Partch scale in
Extended Helmholtz-Ellis JI Pitch Notation with ratio
labels.

It is possible to create pdfs directly from the Editor.
Two Java applications have been integrated via
shell scripts (Mac OS X) or DOS commands
(Windows): the Batik Rasterizer which turns svg
files into bitmapped pdf files and PDF.jar which
combines separate pdf pages into a single
document.

2.6. MaxScore Editor

Figure 11. A Max patcher can be used to connect
MaxScore components (editor and two playback devices)

At some stage in the development of LiveScore it
became obvious that it would make sense to offer
the editor’s convenience in the Max/MSP patching
environment. The MaxScore Editor (a Max
bpatcher) has the same features as its sibling but
can also be connected with other instances of the
Editor, locally or over IP networks, as well as with
synthesizers and other playback devices. It also
reacts to the same set of messages as the core
MaxScore object. Hajdu’s composition Swan Song
is an example for using MaxScore Editor in a live
performance with musicians reading their music off
the screens of networked computers.

Figure 12. Example patch for using MaxScore to send
scores over an IP network.

	
 	

	

3. EXAMPLES

The MaxScore homepage features a section
dedicated to music written by various composers,
Nicolas Collins, Arne Eigenfeldt and Peter Votava,
among them [9]. In the following paragraphs, we
will present the piece Swan Song by Georg Hajdu,
which was premiered at the 2011 Shanghai
Electronic Music Week. An earlier piece of his,
Schwer...unheimlich schwer for bass clarinet, viola,
piano and percussion has been analyzed in an issue
of the Contemporary Music Review on Network
Music [10].

3.1. Swan Song

Like some of Hajdu’s earlier pieces, Swan song -
送别 for cello and percussion is based on
transcriptions of preexisting sonic materials:
speech, music and noises. For this piece Hajdu
chose the final scene of a masterpiece of Chinese
cinema called Farewell, My Concubine by Chen
Kaige, a movie that had a great impact on him
when it was released in 1993. The movie revolves
around a complicated love story and features scenes
from an eponymous Peking Opera. Life and theater
blend dramatically in the final scene.

Figure 13. Section from Swan Song with non-standard
glyphs inserted via “rendered messages”.

The rendering of the transcribed materials by the
cello and percussion, mimicking the voices and
instruments of Peking opera, are accompanied by
processed video from the movie as well as
electronic and prerecorded sounds. The first two
tracks of the master score are being used for real-
time part extraction and sent to the players over the
network, the third and fourth tracks for the control
of audio and video playback and the fifth is a click
track, synchronizing the musicians to the audio and
video playback (Fig. 13). Like in
Schwer…unheimlich schwer the musicians read
their music off of computer screens, only in this

case, the entire score is being sent at the beginning
of the piece with the players using an AirTurn
Bluetooth Page Turner to turn their pages.
	

4. ONLINE PRESENCE AND LICENSING
OPTIONS

We are maintaining a WordPress CMS at
http://www.computermusicnotation.com to promote
MaxScore on the WWW. The website features
pages for news, downloads, documentation,
support, projects and is connected to a mailing list
as well as a discussion forum.
We are offering two JMSL license options at
different prices: A JMSL license as well as the
lower priced LIVE license, which will disable all
Java-only features such as the standalone score
editor and the JSyn API.

Figure 14. Screenshot of computermusic.com

5. OUTLOOK

Since its first release in 2007, MaxScore has
developed into an environment for music notation
with considerable versatility and adaptability. The
recent release of Max 6 opens an opportunity for a
review of the existing code base. Two
developments are particularly worth mentioning:
JavaScript and dict. Cycling ’74 has finally created
a technology called mgraphics offering an
alternative to the 20 year old lcd object by
including a multitude of new drawing modes
(including Bézier curves) and svg support at a
comparable speed. Tapping into the power of the
Mozilla JavaScript engine we will consolidate the
nested Canvas and Picster abstractions into large
jsui objects.
The dict package consists of a set of objects
supporting a hierarchical data structure. By
switching MaxScore’s XML output to dict’s JSON
format we are expecting speed and efficiency gains
when exchanging and processing score data. We

	
 	

	

are also working on MusicXML import, which will
add to MaxScore’s user-friendliness.

6. REFERENCES

1. Nick Didkovsky & Georg Hajdu (2008).
MaxScore. “Music notation in Max/MSP”.
Proceedings of the International
Computer Music Conference.

2. Georg Hajdu & Nick Didkovsky. “On the
evolution of music notation in network
music environments”. Contemporary
Music Review 28, 4/5, pp. 395 – 407

3. http://www.sadam.hu/?q=software
(retrieved on February 14, 2012)

4. Carol	
 L.	
 Krumhansl.	
 Cognitive	

Foundations	
 of	
 Musical	
 Pitch.	
 New	
 York:	

Oxford	
 University	
 Press,	
 1990.	

5. http://cycling74.com/docs/max6/dynamic/
c74_docs.html#m4l_live_object_model
(retrieved on February 14, 2012)

6. http://www.didkovsky.com/JavaMusicSyst
ems/JMSL3.pdf (retrieved on February 14,
2012)

7. Marc Sabat, “The Extended Helmholtz-
Ellis JI Pitch Notation,” in Mikrotöne und
Mehr. von Bockel Verlag, 2005, pp. 315–
331.

8. Clarence Barlow (1987). “Two essays on
theory”. Computer Music Journal, 11, 44-
60.

9. http://www.computermusicnotation.com/?
page_id=266 (retrieved on February 14,
2012)

10. Georg Hajdu, Kai Niggemann, Ádám
Siska & Andrea Szigetvári. “Notation in
the Context of Quintet.net Projects”.
Contemporary Music Review, 29, 1, pp. 39
- 53

